A generalization of the Cauchy-Schwarz inequality involving four vectors

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

a cauchy-schwarz type inequality for fuzzy integrals

نامساوی کوشی-شوارتز در حالت کلاسیک در فضای اندازه فازی برقرار نمی باشد اما با اعمال شرط هایی در مسئله مانند یکنوا بودن توابع و قرار گرفتن در بازه صفر ویک می توان دو نوع نامساوی کوشی-شوارتز را در فضای اندازه فازی اثبات نمود.

15 صفحه اول

A Generalized Cauchy–schwarz Inequality

In the course of realizing certain triangle centers as points that minimize certain quantities, C. Kimberling and P. Moses, in Math. Mag. 85 (2012) 221–227, discovered an inequality in three variables that generalizes the Cauchy-Schwarz inequality, and made a conjecture regarding a generalization of that inequality to an arbitrary number of variables. In this paper, we give a proof of a stronge...

متن کامل

Classical Coding and the Cauchy-schwarz Inequality

In classical coding, a single quantum state is encoded into classical information. Decoding this classical information in order to regain the original quantum state is known to be impossible. However, one can attempt to construct a state which comes as close as possible. We give bounds on the smallest possible trace distance between the original and the decoded state which can be reached. We gi...

متن کامل

A Generalization of the Cauchy-Schwarz Inequality with Eight Free Parameters

The results of the recent published paper by Masjed-Jamei et al. 2009 are extended to a larger class and some of subclasses are studied in the sequel. In other words, we generalize the well known Cauchy-Schwarz and Cauchy-Bunyakovsky inequalities having eight free parameters and then introduce some of their interesting subclasses.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Mathematical Inequalities

سال: 2015

ISSN: 1846-579X

DOI: 10.7153/jmi-09-42